(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(a, x) → f(b, f(c, x))
f(a, f(b, x)) → f(b, f(a, x))
f(d, f(c, x)) → f(d, f(a, x))
f(a, f(c, x)) → f(c, f(a, x))

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:

F(a, z0) → c1(F(b, f(c, z0)), F(c, z0))
F(a, f(b, z0)) → c2(F(b, f(a, z0)), F(a, z0))
F(d, f(c, z0)) → c3(F(d, f(a, z0)), F(a, z0))
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
S tuples:

F(a, z0) → c1(F(b, f(c, z0)), F(c, z0))
F(a, f(b, z0)) → c2(F(b, f(a, z0)), F(a, z0))
F(d, f(c, z0)) → c3(F(d, f(a, z0)), F(a, z0))
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c1, c2, c3, c4

(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

F(a, z0) → c1(F(b, f(c, z0)), F(c, z0))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:

F(a, f(b, z0)) → c2(F(b, f(a, z0)), F(a, z0))
F(d, f(c, z0)) → c3(F(d, f(a, z0)), F(a, z0))
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
S tuples:

F(a, f(b, z0)) → c2(F(b, f(a, z0)), F(a, z0))
F(d, f(c, z0)) → c3(F(d, f(a, z0)), F(a, z0))
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c2, c3, c4

(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace F(a, f(b, z0)) → c2(F(b, f(a, z0)), F(a, z0)) by

F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:

F(d, f(c, z0)) → c3(F(d, f(a, z0)), F(a, z0))
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2
S tuples:

F(d, f(c, z0)) → c3(F(d, f(a, z0)), F(a, z0))
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c3, c4, c2, c2

(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

F(a, f(b, x0)) → c2

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:

F(d, f(c, z0)) → c3(F(d, f(a, z0)), F(a, z0))
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
S tuples:

F(d, f(c, z0)) → c3(F(d, f(a, z0)), F(a, z0))
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c3, c4, c2

(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace F(d, f(c, z0)) → c3(F(d, f(a, z0)), F(a, z0)) by

F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, x0)) → c3

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:

F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, x0)) → c3
S tuples:

F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, x0)) → c3
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c4, c2, c3, c3

(11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

F(d, f(c, x0)) → c3

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:

F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
S tuples:

F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c4, c2, c3

(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0)) by

F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, x0)) → c4

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:

F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, x0)) → c4
S tuples:

F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, x0)) → c4
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c2, c3, c4, c4

(15) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

F(a, f(c, x0)) → c4

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:

F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
S tuples:

F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c2, c3, c4

(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0)) by

F(a, f(b, x0)) → c2(F(a, x0))

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:

F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
S tuples:

F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c2, c3, c4, c2

(19) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0))) by

F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(b, x0))) → c2

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:

F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(b, x0))) → c2
S tuples:

F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(b, x0))) → c2
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c2, c3, c4, c2, c2

(21) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

F(a, f(b, f(b, x0))) → c2

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:

F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
S tuples:

F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c2, c3, c4, c2

(23) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0))) by

F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
F(a, f(b, f(c, x0))) → c2

(24) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:

F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
F(a, f(b, f(c, x0))) → c2
S tuples:

F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
F(a, f(b, f(c, x0))) → c2
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c3, c4, c2, c2, c2

(25) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

F(a, f(b, f(c, x0))) → c2

(26) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:

F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
S tuples:

F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c3, c4, c2, c2

(27) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0)) by

F(d, f(c, x0)) → c3(F(a, x0))

(28) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:

F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
F(d, f(c, x0)) → c3(F(a, x0))
S tuples:

F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
F(d, f(c, x0)) → c3(F(a, x0))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c3, c4, c2, c2, c3

(29) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F(d, f(c, x0)) → c3(F(a, x0))
We considered the (Usable) Rules:

f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
And the Tuples:

F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
F(d, f(c, x0)) → c3(F(a, x0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F(x1, x2)) = x1   
POL(a) = 0   
POL(b) = 0   
POL(c) = 0   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c3(x1)) = x1   
POL(c3(x1, x2)) = x1 + x2   
POL(c4(x1, x2)) = x1 + x2   
POL(d) = [1]   
POL(f(x1, x2)) = [2]   

(30) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:

F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
F(d, f(c, x0)) → c3(F(a, x0))
S tuples:

F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
K tuples:

F(d, f(c, x0)) → c3(F(a, x0))
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c3, c4, c2, c2, c3

(31) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0))) by

F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(d, f(c, f(b, f(b, z0)))) → c3(F(d, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(d, f(c, f(b, f(c, z0)))) → c3(F(d, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(d, f(c, f(b, x0))) → c3

(32) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:

F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
F(d, f(c, x0)) → c3(F(a, x0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(d, f(c, f(b, f(b, z0)))) → c3(F(d, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(d, f(c, f(b, f(c, z0)))) → c3(F(d, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(d, f(c, f(b, x0))) → c3
S tuples:

F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(d, f(c, f(b, f(b, z0)))) → c3(F(d, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(d, f(c, f(b, f(c, z0)))) → c3(F(d, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(d, f(c, f(b, x0))) → c3
K tuples:

F(d, f(c, x0)) → c3(F(a, x0))
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c3, c4, c2, c2, c3, c3

(33) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

F(d, f(c, f(b, x0))) → c3

(34) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:

F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
F(d, f(c, x0)) → c3(F(a, x0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(d, f(c, f(b, f(b, z0)))) → c3(F(d, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(d, f(c, f(b, f(c, z0)))) → c3(F(d, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
S tuples:

F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(d, f(c, f(b, f(b, z0)))) → c3(F(d, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(d, f(c, f(b, f(c, z0)))) → c3(F(d, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
K tuples:

F(d, f(c, x0)) → c3(F(a, x0))
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c3, c4, c2, c2, c3

(35) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)

A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1.

The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1]
transitions:
a0() → 0
b0() → 0
c0() → 0
d0() → 0
f0(0, 0) → 1
b1() → 2
c1() → 4
f1(4, 0) → 3
f1(2, 3) → 1

(36) BOUNDS(O(1), O(n^1))